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Quantumness, Entanglement and non-
Stabilizerness

What makes a system quantum?




Quantumness

Probabilistic theory (shared with classical)

Incompatible observables (uncertainty
principle)

entangled states
Bell’'s inequalities

quantum advantage and universal quantum
computers

quantum chaos

special properties at equilibrium and not of
quantum many-body systems - quantum
simulation

Bell's inequalities (CHSH)
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(ab) + (a’b) + (ab’) — (a'b")| < 2

We know that there are
separable measurements that
violate the CHSH inequality

Why? Entanglement (?)



Is entanglement enough?
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Not all density matrices are separable

Rényi entropies

S(a) = . : log Trap

— (X

All these evolutions maximally
entangle the state, but they
feature increasing complexity



Entanglement in quantum many-

body systems...and?

Entanglement is of fundamental importance

in QMB systems because:

1. It determines the hardness of simulation

by tensor network methods

2. It detects exotic phases of matter like
topological states

3. explains the structure of CFTs

4. gives an explanation of thermalization in

closed quantum systems
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How complex is this

entanglement?



Entanglement Spectrum 0: = \. — N\
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Phys. Rev. Lett. 112, 240501 (2014);

Phys. Rev. B 96, 020408 (2017)
Phys. Rev. B 107, 134202 (2023)



Quantum circuits can be
very C()mplex both learning and simulating are

o exp(2n) costly. Of course, it would be
and thllS hard to s:mulate easy without entangling gates
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FACT: circuits with only H, S, C_X are benign: why?




Quantum circuits
can be very simple

These stringy objects are easy
to manipulate, we need 4n bits

X110Z324Y5Xg ... Yy

These processes are easy, h"*2
matrix elements

HXH=27 HZH=X
CX.C=X,Xo ZXZ=-X
SXST=Y CZ,C = Z7Z

Clifford group: centralizer of
Pauli group. Strings are
mapped into strings

P— CTPC = P

Gottesman et al : Clifford group is
easy to both learn and simulate:

poly(n)

Simulating t-doped circuits ~ poly (n) exp (t)
S. Bravyi and D. Gosset, PRL 116 (250501)

Clifford operations,

computational basis states:
STABILIZER resources



The t-doped random
Clifford circuit

transition to quantum chaos

« A T-doped random Clifford circuit
IS @ circuit made with the benign
gates H,P,C_X injected with some
T-gates

* As the number t of T-gates
increases, we inject more SE in
the circuit

* [ts qguantum complexity increases,
driving a transition from Clifford
circuits to more generic circuits
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Magic (non-Stabilizerness)




What is magic?

Magic quantifies the distance from the
Free (Clifford) resources

1

Maior () = min = |14 — o]l

Unfortunately such distances are
uncomputable and unmeasurable

Free States for stabilizer formalism

PSTAB = {C|iy ...i,) : C € C(d™)}
STABO := {states purified in PSTAB}
STABI := {Hull| PSTAB]}

One can establish STABO as

STABO := {v : ma(v0) = 0}

m2 is an entropic measure of magic



Non-stabilizerness =
Strin g entr()py String entropy = Stabilizer Entropy SE

1
* Strings proliferate because of non Clifford q _ 1o E (o
unitaries o (p) 1 — o 2 P ( )

* The linear combination of strings comes with 1

a weight. This weight represents the p —_— — E tI’(Pp)P

probability that such a string would be the

outcome of a measurement P
Example: consider the evolution —1 4
of a string with two T operations m ( ) — _1lo d ZP tr (P/O>

X1 LT3 XTI Z,Ys T X3 T ... Yy,
~ SE is a good monotone for pure

\\// \\4/ states and a good proxy in the
(X — V) L x—v) resource theory for mixed states

1
V2 V2



SE can be measured
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Experimental results IBM-

Measuring Magic on a Quantum Processor
Falcon quantum computer

L. Leone, S.F.E. Oliviero, AH, S. Lloyd
Nature Physics Quantum Inf 8, 148 (2022)




Interplay between SE and Entanglement

Bell's inequalities, anti-flatness, scrambling




Bell's inequalities

aa’ b b’
N correlated ¢
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(ab) + (a’b) + (ab’) — (a’b’)] < 2

Let By be made of just Pauli measurements for both Bob and Alice

sup tr (B()CUJ()CT) < 2
C

AB = cm(U)

Bell’s violation is
measured by SE

This state can be
maximally entangled!



anti-flatness =
scrambled magic
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the interplay between SE and entanglement
gives rise to scrambled magic and quantum
complexity

_ Trlpy]
A= (Tr(p%])?

We propose scrambled, non-local magic as
a probe and measure of the resource of
quantum complexity in many-body systems

m" () = U%g}g ma [Ua @ Up(¥)]



Scrambling oTOC:

1

1. Quantum chaos depends on the 0 U.,) = —(tr(P UTP . P U‘LP []
quantum butterfly effect. far away AD( t) 2’”< ( AFE S DEEE AT S D t)>
Influences can have dramatic effects

everywhere scrambling condition:
1 1 1
2. In order for a perturbation to spread D ap(Uy) =
everywhere, its operator needs to (U) 22| 4] 22| D] 22(|Al+[D])
fragment and grow: it is a 1
combination of entanglement and M.(U) = loc Q (U
string entropy, that is, SE O‘( ) 1 — v 5 O‘( )

3. If there is chaos, there is scrambling, quantum chaos is reached
and scrambling can be measured by when SE is maximal
the decay of correlations: OTOC



Magic and quantum protocols

verification, learning, decoding black holes




Quantum
certification e i e

1. What do we need to achieve
quantum advantage? A magic M The number of resources N,, needed to ascertain
scaling with the number of qubits the fidelity F with accuracy ¢
and success probability 1 — 0 is bounded as
2. Quantum computers are
notoriously fragile. One needs to

i | 2 . 2 64 2
check if they are doing what they Z1n 2 expl M < N-<22 10 2 oxnlM
promise, measuring a fidelity 25 xp| Mz (9)]< p="1 M p[Mo(v)]

3. Measuring the fidelity turns to be
harder as the quantum computer
IS more advantageous, another
sign of fragility!



L Leone, SFE Oliviero, AH
Learning t-doped stabilizer states

Learning t-doped stab

States Quantum 2024-05-27, volume 8, page 1361

» Given a t-doped Clifford Circuit, a t-doped stabilizer state

Is defined as n
[0y = C10)®
LT+ 69,
 For any t ) (Vi =2'"" (H—I—Ztr (P Wt th H ( 2] J)

H I1

» Elements of Hand 1_[commute.

e For [ < 1y it holds that: th> = ﬁG(Ct) ‘¢t> ® ‘O>n_

O(exp(t) poly(n))

learning by compressing

the stabilizer entropy requires



Quantum correlations

spatial correlations:

I(A|B) = S(A) + S(B) — S(AB)

space-time correlations:

I(AD)=5(A)+S(D)—-S(AD
( ‘ ) ( ) ( ) ( ) The channel E goes from A to DB’

All the information of A is encoded by

the entanglement with R g : A> —> trRC\Ijt




Decoupling theorem

I(R|DB") = |A| 4 log 22 Q4 p (U})

So if the U is scrambling A is
perfectly correlated with the output
DB’:

I(R|DB") = |A| — ¢
D| = |A] +loge™/?

How do we recover |IRA’> from

the output DB’?

=
Q
®0
Q
=

We need U = VAT for this to work,
but U is actually inaccessible. What
can we do? can we learn U?

Hayden-Preskill, JHEP 2007,120
Kitaev-Yoshida, 1710.03363



Efthcient decoder
learning

Imagine there are some preserved
Clifford orbits:

GaA(Uy) :={P e P, |U/PU, € P,}

PeGpUy), VPV =U PU,

The randomizer R completes V in a
random way, keeping it Clifford

1 1
.F.Vv((]t)2 1 | di—l 2 1_|_22|A‘ n 2|D|
|G (U)

perfect fidelity for t<n; then degradation occurs

L Leone, SFE Oliviero, S Lloyd AH
Phys. Rev. Lett. 132, 080402 (2024) and
Phys. Rev. A 109, 022429 (2024)



Black holes are scramblers that leak
information

The black hole Is Hawkmg radiation
an information aximally

‘ - \‘}\’\ t ‘ tate
scrambler. L . “\ entangteg s\
Recovering the :

iNnformation Can Bob recover ¥ -
- 27
requires to be able frompand @ 7 —_—
W)

to unscramble ance /1

Life ofablackhole Time



“Alilce laughed. 'There's no use trying,' she said. 'One can't
believe 1mpossible things.’

I daresay you haven't had much practice,' said the Queen.
'"'When I was your age, I always did i1t for half-an-hour a day.
Why, sometimes I've belleved as many as six 1mpossible things

before breakfast.
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The price for learning is However, the price for simulating the
Ol (n 2t> black hole is poly(n)! How can a
p y ) complex U be decoded by a simple U?
This sounds quite incredible!
as long as t<n



SE and EE in quantum many-body systems




SE and entanglement

b
. E/ntanglement spectrum ﬂatneg / Magic vs Flatness \ / Experiment \
Anti-flatness of the entanglement Hilbert space

Initial product state [vo) Input: pure state |¢) and threshold
Output: True if the state is magic

1. Set [¥) = |¢0), bool = False, iter = 0.
2. While (iter < Njier) and (bool = False) do:
Measure F, = Fa (|9))
|ff"A > €.
bool = True
else
choose a random unitary T € C,,
do iter < iter + 1

Entangled stately) |} .. Full Clifford orbit  —Shallow orbit - return bool

spectrum: entanglement is needed to

have a spectrum to start with : B

O
a8y
-
-
O oo~NOoOU bW

On the other hand, magic, makes the

spectrum bend: non magic = FLAT ~ "
S 102 ' bVt Fa
<C
Flat ES=M([¢)) =0 Non flat ES=M(J)) # 0 © = 0.9 ' - '
. . . 500 1000 1500 2000 ! -
Average on C is actually magic! X S0t N moos oo T tones T
k Ak < 6/m=0.1 £=0.01
9occccccce . F:( 6/m=0.15 30'6’ €=0.02
% i 8/m=0.2 Nga| —o— £=0.03
° Q —— £=0.04
. 10 = - 0/n=025 4 2] |
------ . —————tsepe > 1 100 200 300 400 0.0]

/ \ NLayers / \ 10 M, 10° /

.;C A (w) — Tmbi — Trzwi Phys. Rev. A 109, L040401 (2024)
(FalCY))c = ald,da) Miin(|9))
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SE in quantum spin chains
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A stabilizer gap separates integrable

from non integrable systems

work in progress...



Holography and scrambled magic




AdS-CFT correspondence

 Holography states that quantum
field theory on the boundary is
equivalent to GR in the bulk

« Breakthrough: RT formula.
Entanglement in CFT (quantum) is
equivalent to minimal surface in AdS
(solution to Einstein equations)

« But what about gravity? Gravity
needs back-reaction. This can be
measured to the susceptibility of
areas to matter = tension

Conformal

) boundary A B
£ = cereeerereesesiseciciiiciiiiiieiiiteceanns porencecas
Bulk
Minimal Surface ),
\ VA (geodesic semicercle)

Big Question:

what is the holographic
dual of back-reaction?



The holographic dual

()f gravity iS magic local unitary transtormations U4 ® Up
cannot change the spectra
* The intuition is: by RT formula, so have no holographic meaning.
we know that surfaces are Rényi h hen?
entropies, and tension are What then:
susceptibility to the Rényi index n 5
1
 figure of speech: without tension, 1A X mNL (Qp)
a drum gives no sound. (4G)2 T
 However, without SE, all spectra
must be flat: somehow SE is
involved in tension and thus in :
back-reaction the hologra.phlc.: dual of
back-reaction is (non-
C Cao, G Cheng, AH, L Leone, W local) magic

Munizzi, SFE Oliviero, 2403.07056



(partial) list of open problems

» Scrambling in shallow t-doped circuits

» SE as purification resource

» correlations between SE and EE

» resource theory of non-local magic

- non-local magic susceptibility and topological order
» SE in the SYK model

- stabilization and disentangling in temperature

» gravity and non local magic in AdS-CFT

» SE and non-locality/non-realism




